ive in a cancerophobic society. For several decades the man on the
str::; ll:‘éi It?een bomba[ided with the carcinogen of the wgelg tothe pqmt of
numbing exhaustion, This epidemic reacl’1ed !u@crous h'fmts when it was
announced, inall seriousness, that mother’s milk “caused” cancer beza;sci
it contained trace amounts off PCBs and other fagvfuloti‘}:le]rsmcals, and tha

i uld be breast-fed for a maximum of 6 m 3 _

Ch;lr:kpearl\tfgse present dilemma can be laid at the feet of zealpus legislators
and news-hungry media folks; in part, the problent\ exists simply becE:se
our technical expertise has far outstripped our legislative apparatus. hws
about cancer in the environment were passed seve_ral decpdes ago, when
the prevailing attitude was that any amountof a carcinogenin the -soﬂ, air, or
water was too much. Since that time, technical improvements in analytic
instrumentation have allowed us to detect trace amounts of chemicals that
are orders of magnitude smaller than the amou.n§s detectaple when thc;
laws were passed (literally equivalent to a martini made with a drop ﬂ§>
vermouth in a swimming pool of gin). However, the laws remain on the
books and any attempt to repeal them at this stage would promote a rapid

mise to any political career. _ N o
deIn part, too.y tlf’e issue is epidemiologic. Ep'!demiolog_;lsts. ont.:ologlsts,-'a:\hnd
toxicologists tend to view the issue of causationas a binary variable —ei :ier
something causes cancer or it doesn’t. Adrplttedly, some attempt is m:h e
to quantify the risk by extrapolation from animal data to hum§ns. l\l%ve_f e
less, it would certainly assist the field, and perhaps our quality 9f life, if we
would pause to ask just how much cancer a particular qgc_ent might cause%
Of course, this question demands some means of quantifying the degreeo
risk to life and limb from a particular agent. ' '

This chapter deals explicitly with this issue, discussing a variety of
measures of association used by epidemiologists. The probl.ems. to
which these measures can be applied are far ranging, from the estimation
of the risk to health from an environmental agent, to the“beneﬁt of treat-
ment, to the agreement between a diagnostic test and a gold standard,

" and to issues of observer agreement.
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ISSUES IN CHOOSING A MEASURE

The issue of measurement is critical to much of science. Lord Kelvin, a
distinguished physicist of the 1800s, once said

| often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when
you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind; it may be the beginning of knowledge, but you
have scarcely, in your thoughts, advanced to the stage of science
whatever the matter may be.

Epidemiology is not immune to these admonitions. The issue of
measurement in many sciences is, by and large, a technical issue of
instrumentation, and of developing the right bit of apparatus to measure
some phenomenon with the appropriate degree of precision. In epidemiol-
ogy the issues are a bit more conceptual, and much thought must be
directed to the appropriate selection of which variable to measure in the first
place. Often the choice of variable represents a deliberate compromise; for
example, in looking at the effects of an educational strategy for practicing
physicians one could decide to measure the increase in knowledge of the
participants, a variable that is likely sensitive to the educational strategy and
can be easily tested with methods like multiple choice questions. Unfortu-
nately, this choice begs the issue of whether the increased knowledge will
be translated into a change in physician behavior with patients. In tum, we
should worry- whether the doctor's admonitions will change patient
behavior, whether this behavior change will actually result in improved
health, and whether the improvement in health will result in increased
longevity or decreased morbidity. It is evident that the further we get from
the intervention, the more socially relevant the outcomes are, but the less
likely they are to be sensitive to the intervention. : '

THE DIMENSIONS OF MEASUREMENT

Epidemiologists have categorized the wide number of potential choices
in the measurement of the effects of illness into the six Ds — death, disease,
disability, discomfort, dissatisfaction, and debt. A little creativity can easily
result in some additions to the list: psychiatrists would like to look at

¢ - dysphoria and depression, and sociologists might examine disenfran-

chisement or dysfunction.
Some of these variables, like death’ and debt, are relatively easy to
measure, and hence are frequently used in studies in epidemiology. Others,

i like dissatisfaction and disability, are notoriously difficult to measure, and
£ have been the making of many a career in epidemiology. We will avoid, for
§ the most part, the technical issues surrounding the measurement of these
§ variables; the important point is that the Ds serve as a reminder that
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measurement of dependent variables or outcomes need not be confined to
the traditional measures like death and disease.

The choice of an gutcome variable is almost inevitably a compromise
based on the interplay among the several following factors:

ﬂ:n's measure because they are likely to occur shortly after exposure and
dissipate rapidly, and so they have vanished by the time patients arrive
at the clinical setting for testing. Also, relatively large changes in pul- ;
monary function, of the order of 20 percent, are required to show any |

1. Precision of Measurement, Measures that are subject to a large effect on patients’ function. For a similar reason, the use of death as an |
degree of random variation or individual interpretation are less useful endpoint, however important, is unlikely to be sensitive to any subtle |
than measures that are more precise. The judgment of precision changes resulting from low-level exposure. Of course, if formaldehyde
cannot be made on an a priori basis; careful studies have shown is suspected as a potential human carcinogen, the use of death as a |
appallingly high error rates in many areas of clinical medicine, such as measure, specifically respiratory cancer death, is uniquely appropriate. i

radiology, that conventional wisdom would suggest are highly objec-
tive. Methods to assess precision are reviewed later in this section.

2. Logistical Factors. Measures are often chosen simply because they
are inexpensive, Cost is certainly one criterion, as are other logistical

The important implication of these considerations is that issues of meas-
urement are central to much research in epidemiology. The choice of an
approprrllate lr:;gasure is a complex exercise in compromise. Just as investi-
: Cos ne : gators should be aware of the issues involved in this choice, critical readers
factors like the likelihood of obtalhlng compliance, or the ease of of the literature should examine closely the variables used in a reported

entering the data. : - investigation to . S
3. Ethical Issues. Some measurements are unsuitable for ethical rea- goals. gation to determine whether they are appropriate for the research

sons. No ethics committee would permit coronary angiography to be
performed on all patients in a trial, regardless of cost, simply because of
the risks associated with the procedure (unless the test was a part of the
patients’ regular care). !

4. Importance., Often the most important variables, in terms of their
burden on the affected individual, are the most impractical to use in
studies. One good example is death. It has considerable importance to
the individuals involved. However, although it is precise and easy to
measure, death is often rejected as an outcome variable in studies

‘because it occurs too infrequently (thank goodness), and thus the
follow-up period required would be too long. As a result, investigators
often substitute other variables that are less important, but more avail- .
able for measurement. As one example, hypoglycemic agents were , ~
adopted because they demonstrated the appropriate effect on blood
sugar, which is much easier to measure than diabetes (although not as
relevant). Much later the widespread use of the drugs was discontinued
because long-term studies showed that the lower blood sugarlevel had
no impact onlongevity or complications from the disease.

5. Sensitivity. For a variable to be useful, there must be some reason-
able chancethat it is related to, or likely to change with, the independent
variable under study. As an example, researchers often select a labora-
tory test result as a measure of effect of a risk factor or therapeutic
intervention. For instance, several studies have locked at the effect of
formaldehyde on lower respiratory tract disease using measures of
pulmonary function as the dependent variable. The choice is reason-
able in some respects: pulmonary function can be measured with a
high degree of precision and relatively cheaply. The data can be elicited
from patients far more easily than by using such alternatives as symp-
tom diaries, which may cause severe problems with compliance. The
difficulty is that the effects of formaldehyde may not be detectable with
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TYPES OF VARIABLES

When considering issues of measurement, it is useful to ma.ke a distinc-
tion among different types of variables. Althougp t.her‘e are various ways to
describe the different variables, the important distinction is between those
variables that are categorical, such as dead/alive, diseased/ normal,.or
Protestant/Catholic/Jewish/other, and those t}'lat are contl:_moug, h_ke
diastolic blood pressure, hemoglobin level, hel_ght, aqd many subjective
states, such as pain, disability, or mood. Categorical vapables can pnly take
on certain discrete values. By contrast, continuous variables can, in theory,

e an infinite number of values. _ ’ .
aswirt?lin these broad classes thereis often a further subdivision. Categonf:al
variables are classified into nominalvariables, which are named categories
like dead/alive, male/female, or white/Oriental/African, and ordinal
(ordered) categories like Stage l/Stage 1l/Stage 1l ‘cancer or much
improved/improved/same/worse/much worse. The distinction between
the two is that there is no order implied for nominal variables —“{hltes are
no higher or lower than Orientals or Africans. lp contrast, there is a clear
order implied in ordinal variables (e.g., staging in cancer). o

Continuous variables are also divided into two classes. With interval
variables the distance between points has some quantitative meaning, SO
that the difference between a blood pressure of 95 mm Hg and 105 mmHg
is the same as the difference between 110 mm Hg and 120 mm.Hg. For
ratiovariables, the ratio of two quantities has meaning (e.g., theratio of two
temperatures expressed in degrees Kelvin). These latter two concepts are
understood better by considering violations of the rule. A rating scale going
from “much below average” to “much above average” is not an interval
variable, because the distance between “much below average and “below
average” has no real meaning —it certainly would not be easy to demor3:
strate, for example, that it is the same as the difference between “average
and “slightly above average.” In a similar vein, theratio of two temperatures
expressed in absolute or Kelvin degrees has some meaning, but degreeso on
the Celsius scale are not ratio variables — 20° Cis not twice as hot as 10°C.
The distinction between categorical and continuous variables is impor-
tant, since it influences nearly every way we think about them, as will
become evident in the remainder of this section. However, the dlﬂgrepce
between nominal and ordinal variables is only important in the applnpatnon
of some slightly esoteric statistical tests that work for orde.red categories but
not for nominal categories. Similarly, there is virtually no importance to the
distinction between interval and ratio variables, so the less said the better.
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MEASUREMENT WITH CATEGORICAL VARIABLES

We began this section on measurement with the suggestion that much of
the confusion surrounding the carcinogenic risk of many environmental
hazards is a result of inadequate attention paid to the quantification of risk.
In this section we will develop a number of ways to approach the issue of risk
assessment. There are two parts to the question: (1) deciding on the
appropriate way to measure the health effect, and (2) deciding on some
way to express the association between the supposed cause and the
outcome. : .

For the moment let us define the issue a little more precisely. Without
getting into the specifics of risks from radiation, PCBs, dioxin, ethylene
dibromide, Agent Orange, video display terminals, or hydro lines, it would
seem apparent that we are being bombarded with all sorts of chemical,
electromagnetic, nuclear, and particulate delights that never assaulted our
ancestors. That being the case, one possible result of the overall impact of
all these insults to the organism would be an increase in the overall rate of
cancer over the past century or so. If these pollutants are indeed devastating
our health, this should be reflected in a gradual increase in cancer rates as
time passes.

As we shall see, this seems simple enough, but it isn’t. First, should we
count all cases of cancer, or all deaths from cancer? After all, to the extent
that our therapies are getting better we might actually be curing some folks,
which would make the death rate drop even though there may be just as
many or even more cases around. On the other hand, we're also getting
better at detecting cancer with methods like Pap smears and mammo-
graphy, which weren't available a few years or decades ago. The effect of
this might be to inflate the apparent number of cases in recent years,
although it would have less impact on deaths, since by the time someone
dies from it, cancer is fairly obvious.

For convenience and convention we call the counting of cases the
measurement of frequency, and the counting of deaths the measurement
of impact. We will explore the issue of the overall effect of the environment
using both these measures, by examining the risk of cancer in the 1930s

~ and the 1980s to see if we can detect the effect of a (questionably)

deteriorating environment.

MEASURES OF FREQUENCY

Measures of frequency focus on the occurrence of disease as opposed
to the sequelae of disease (in particular, death). There are a number of ways
one can approach the counting of disease. The choice is based on the
unpleasant reality that it takes some time to do a study, and while the clock
is ticking, new folks are unfortunately developing a disease at the same time
that some lucky souls are being cured of it (at least for some diseases) and
others are dying of it. All this coming-and-going in and out of the study
wreaks havoc with any attempt to count who actually has the disease. To
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overcome this state of affairs, epidemiologists have worked out a few
standard ways of counting bodies, warm or otherwise.
To retum to our original problem, let’s suppose we wish to count all cases

of cancer (of all types) in Canada in 1987. Having agreed on the criteria for -

diagnosis and carefully set up a sampling frame that is perfectly representa-
tive of the population of Canada, or, altematively, having developed a
reporting mechanism for all cases in Canada, we now start counting on
January 1 and stop on December 31. All the counts come pouring in, and
the systems analysts and statisticians are rubbing their hands in glee at all
the years of prospective employment ahead. Now the embarrassing ques-
tions emerge.

To illustrate the difficulty, let's examine what happened at the cancer -

reporting center in Plumcoulee, Manitoba. There are a total of 200 peoplein
this farming community, a fact that we'll need to know later. The reports to
the center are shown in Table 3-1. ,

It is obvious from the table that we can get wildly different estimates of
the amount of cancer in Plumcoulee depending on how we choose to do
the counting. If we just look at the number of cases around at any point in
time, we find four in January, three in December, and eight in July. If we
count the total number of folks who were reported this year, the answer is
12. If we count the number of new cases in 1987, it's eight. Finally, there
were six deaths from cancer in that year.

There are, however, some standard ways to report the data, as we’'l
discuss in this section. :

TABLE 3-1 Reports of Cancer, Plumcoulee, Manitoba

Patient Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 I X

2 D R ¥

3 -
4 I

5 DmmmC

6 D I

7 — C .

8 : D I
9 D I X

10 : D
11 D I—— C

12 D I X

D = first diagnosis; m = with disease; C = cured; X = died
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INCIDENCE
Incidence is defined as follows:;

Number of new cases in a fixed time period
Number of people at risk

Incidence =

Usually the period of study is chosen to be 1 year, in which case we speak of
the annual incidence. In Plumcoulee (see Table 3-1) there were eight
new cases of cancer in 1987. If we had decided to focus on the 3-month
incidence, there were three new cases from January to March.

The denominator, or number of people at risk, is not quite 200 people
because patients 1,3,4, and 7 already had cancer and thus could not be
counted as “atrisk’’; this reduces the denominator to 196. Thus the annual
incidence is:

Annual Incidence = 8 = 0.0408 cases per year

196
Usually the incidence of disease is much lower than in this example, and
the correction for preexisting cases is unnecessary. Further, to make things
more readable, incidence is often cited as cases per 1,000 (in this example,
40.8 cases per 1,000 per year), or even as cases per million per year for very
rare disorders.

PREVALENCE

If we are planning screening programs, disease incidence is of imme-
diate interest. However, if we are concemed with the provision of services for
people with the disease, such as palliative care, our immediate concem is
“How many people actually have the disease at any point in time?” This
quantity is called the prevalence, which is defined as follows:

Number of people with the disease
Number of people at risk

Prevalence =

In contrast to incidence, prevalence is determined at a single point in
time. Still considering the data from Table 3-1, perhaps the most rational
pointin time to choose is the middle of 1987, or July 1. Looking at the table,
wefind that patients 2, 3, 4, 6, 8, and 9 had cancer at this time. Patient 5 was
cured sometime in July, and should be counted on July 1, whereas patient

11 was diagnosed in July and would likely not enter the count. This leaves a

total of seven cases in the numerator.
Again the denominator is not quite 200. By July 1, patients 1 and 12 were
deceased, so the denominator is only 198. Finally, the prevalence is:

Prevalence = JW = 0.0354 = 354 per 1,000
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~ PERIOD PREVALENCE

Aclose analogy tothe incidenceis the period prevalence, whichis based
on the number of people with the disease over a defined period of time
(usually 1 year). The formal definition is: :

Number of people with the disease over the time period
Number of people at risk over the time period

Prevalence =

The calculation of annual prevalence in our example from Table 3-1 is
straightforward. There are 12 people identified as having cancer in that
year, and 200 atrisk, so the period prevalence is simply 12/200 = 0.06 =60
per 1,000. If we were to calculate the quarterly prevalence for the first
quarter of the year, we would include only patients 1, 2, 3,4, 6, 7, and 12; the
period prevalence for 3 months is therefore 7/200 =0.035 = 35 per 1,000.

RELATION BETWEEN PREVALENCE AND INCIDENCE

The previous definitions were slightly different iri dimensions. Incidence
is based on a fixed time period, and is quoted per month or year. However,
prevalence is calculated at a single point in time. It happens that the two
quantities have an interesting relationship, which involves the average
duration of disease: _ -

Prevalence = Incidence X Duration

It's not easy to demonstrate the relationship mathematically, but it is easy
to show that it is reasonable. Think of a chronic, but relatively nonlethal
disease like rheumatoid arthritis (RA). Once an individual acquires the
disease, he/she carries it until death, so the duration is calculated by
subtracting the average age at onset from the expected life span. Thus,
each new case of RA is added to the pool of prevalent cases, and although
relatively few cases may be added each year, there are a large number of
prevalent cases around. So the prevalence of RA is much greater than
annual incidence.

By contrast, the ordinary cold has a duration of a few days at most, and
kids can often get more than one per year. In this situation the annual
incidence might approach, or even exceed, 1,000 per 1,000. Yet unless
there's an epidemic around, relatively few people have a cold at anytime, so
the prevalence of colds is not nearly as high as the incidence — perhaps 50
per 1,000. Because the duration is very short, the prevalence is much lower
than the annual incidence.

The relationship may seem to be of only arcane interest. However, it is
often easier to obtain published data on disease prevalence than on inci-
dence; yet if you want to do an intervention or prevention study, it is usually
of greater interest to know how many new cases you are likely to get.
Through the use of this formula and a reasoned guess at the duration of the
disease, you can arrive at a plausible estimate of the number of new cases.
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CASE FATALITY RATE

While we're examining the fate of the Plumcoulee patients from Table
3-1, we might as well introduce a term that links disease frequency, or the
likelihood of developing the disease, to disease impact, which is the likeli-
hood of dying from the disease.

First of all we note that a total of six persons from Plumcoulee died of
cancer during the study. It is natural to express this quantity in a similar
manner to our measures of disease occurrence to form a quantity called the
mortality rate; which is defined as follows: .

Mortality Rate = Number of deaths from disease in a time period
Number of people at risk

Studying the data from Plumcoulee, we see that six people (patients 1, 2,
4,6,9,and 12) died of cancerin 1987. There were 200 people atrisk, so the
annual mortality rate was 6/200 = 0.03, or 30 per 1,000.

As we shall see in the discussion on measures of impact, this approachis
a fairly crude basis for comparison. However, there is another relationship
evident from the display. When relating frequency to impact we might wish
to study the likelihood that a disease may be fatal. This quantity is called the
case fatality rate, and is defined as follows:

Case Fatality Rate = Number of deaths from disease in a time period
Number of people with the disease

In the present example there were 12 people with cancer in Plumcoulee
in 1987, and six deaths; the case fatality rate is therefore 6/12 =50 percent
per-year.

MEASURES OF IMPACT

We began this discussion with the idea that one broad way to determine
whether all the industrial pollutants have affected human health was to
examine the rates of cancer over several decades, to see if any increasing
trend was evident. We briefly discussed the advantages and disadvantages -
of looking at disease frequency (cases of cancer) and disease impact
(deaths from cancer).

The impact of disease need not focus entirely on death. For a chronic
disease like arthritis, disease impact would more appropriately be calcu-
lated using measures of activities of daily living, function, or quality of life.
However, for the example we have been pursuing we will focus on mortality.
The measurement of mortality has one major advantage over the meas-
urement of frequency, namely that relatively complete archival sources are
available and have been for several decades (or for several centuries in
Great Britain). Instead of setting up a reporting system such as was pro-
posed for Plumcoulee and allowing it to run for a few decades while we
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epidemiologists cool our collective heels, we can conduct a retrospective
impact study. In this discussion we use actual data, based on Canadian
statistics for 1933 and 1973, to examine our research hypothesis that the
increased level of chemical, radiologic, and particulate pollution in Canada
in the intervening 40 years has led to an increase in the observed rate of
death from cancer.

MORTALITY RATE

To test this hypothesis, let's turn to our desk copy of Canadian statistics.

We look up the appropriate sections and compile the data (Table 3-2). To

make the comparison easier, it makes sense to work out the number of

deaths per 1,000 population. This is called the annual mortality rate, which
_ is defined as follows:

Annual Mortality Rate = Humber of deaths in ayear
: ' Total population

For 1933 the annual mortality rate is 11,056 per 10,500,000, or 1.05 per
1,000. For 1973 the annual mortality rate is 44,877 per 21,400,000,0r2.10
er 1,000.
P From these data it would appear that the rate of cancer has nearly
doubled in 40 years. We may conclude that perhaps there is evidence of a
significant health effect of pollutants. Nevertheless there are a number of
steps we can take to refine the comparison.

PROPORTIONAL MORTALITY RATE

We were in the fortunate position when we calculated the mortality rate to
have a good estimate of the denominator, or the population at risk. Federal
census takers in the Westem world go to great pains and expense to
determine how many people there are in the country in given years (per-
haps so they can ensure complete tax returns to pay for the census).
However, in many situations where research is conducted on subpopula-
tions (e.g., workers exposed to welding fumes or residents near a landfill
site) it would be very difficult or impossible to determine on the basis of
existing records how many people were in the denominator in a given year.

On the other hand, it is much easier to determine the cause of death of all
the people in a population who died, because death certificates are a legal
necessity. We can reason that if pollutants are causing more cancer in 1973

TABLE 3-2 Canadian Cancer Statistics

1933 1973
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than they did in 1933, proportionately more deaths should be caused by
cancer than by other causes in 1973 than in 1933. This approach is called
the proportional mortality rate or PMR. |t requires no knowledge of the
people at risk, only mortality data. The PMR is defined as follows:

pMR — _Number of deaths from a particular cause
' Total number of deaths

It turns out that in 1933 there were a total of 122,850 deaths recorded in

Canada. In 1973, 236,200 deaths were recorded. The resultant PMRs are

shown in Table 3-3,

It appears that the same trend to higher mortality rates in 1973 s present in
these data. Of course one alternative explanation is that proportionately
more people were dying of cancer in 1973 simply because fewer people
were dying from everything else. This makes some sense because tubercu-
losis, diphtheria, and other serious infectious diseases were presentin 1933
but absent in 1973, Certainly there is some evidence that this may be
occurring; males born in 1933 had a life expectancy of 41.1 years, whereas
men born in 1973 had a life expectancy of 68.2 years.

This example also nicely illustrates the strengths and weaknesses of the

PMR method. Its strength is that it can be applied in situations in which only
minimal data are available; its weakness is that a high PMR is always open to

two interpretations: (1) more deaths from the cause of interest or (2) fewer -

deaths from everything else.

AGE-SPECIFIC MORTALITY

In general, cancer is a disease of old age. Although a few young persons
die of cancer, in most circumstances there is a period of a few decades
between exposure to some cancer-causing agent and the onset of the
disease. This must be kept in mind when contrasting 1933 with 1973; not

only might more people have died from other causes in 1933, as we-

mentioned previously, but also more people might have died young from
other causes and not lived long enough to develop cancer. '

To determine if this reasoning results in an alternative explanation for the
higher observed cancer mortality in 1973, we could look only at the death
rate from cancer in older people (e.g., older than 75 years of age). We could

TABLE 3-3 Proportional Mortality Rates for Cancer

1933 1973
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then calculate the cancer mortality rate in this age segment. The result is
called the age-specific mortality rate, which is defined as follows:

Number of deaths in a particular age range
Total number of deaths in a particular age range

Age-Specific MR =

Lét's work this example through. In 1933 there were 5,126 Canadians
older than 75; in this group there were 110 cancer deaths. Therefore the
age-specific mortalityrate is 110/5,126 =21.5 per 1,000. Similar data from
1973 indicate that there were 915 cancer deaths among the 35,295 Cana-
dians over age 75, which results in an age-specific mortality rate of
915/35,295 = 25.9 per 1,000. -

. These rates are indeed a little closer than the overall mortality rates we
looked at earlier, thereby suggesting that a partial explanation for the
differences is simply that people were dying of other causes in 1933 and
were not living long enough to develop cancer. However, it is unfortunate
that in order to make this comparison it was necessary to ignore most of the
data. '

"STANDARDIZED MORTALITY RATE

The discussion on age-specific mortality rate suggested that if we re-
stricted our view to those individuals who survived long enough to be at risk
of developing cancer, there was a smaller difference in cancer rates
between 1933 and 1973 than was evident when we simply looked at overall
mortality. The difference between the two sets of data reflects (1) the
influence of age on mortality rates from a specific disease, and (2) differen-
ces in the age distributions between the Canadian population in 1933 and
1973. '

Most diseases show a strong relationship with age. Risk from chronic
diseases like heart disease and cancer increases with age, whereas infec-
tious diseases are more common in the young. Even pedestrian mortality
shows a strong bimodal distribution with age, and strikes the very young,
who lack awareness of the dangers of traffic, and the very old, who can no
longer see and hear danger as well as before (or run as fast!).

‘Because of the strong influence of age on disease mortality rates, any
comparison between two different populations is considerably strength-

- ened by correcting for the differences in age distribution. This approach is
called the standardized mortality rate or SMR, and builds on the age-
specific mortality rate. Having broken down the deaths in the population of
interest by age and created age-specific mortality rates, we then use them
with the distribution of age in a reference or standard population to create
an overall projected mortality rate. There are four basic steps in the process:

L. Calculate the age-specific mortality rate for each age range in the
population of interest.
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2. Multiply this rate by the number of people in the age range in the
standard population. This then determines the number of individuals in
the standard population who would die from the disease.

3. Add up the total number of projected deaths acrossall age levels of the
standard population.

4. Finally, convert this to a mortality rate by dividing by the total numbers
in the standard population.

For example, to compare the cancer mortality in 1933 and 1973, we will
project them both onto a reference population distribution (in this case the
population distribution of Canada in 1970, but any year could have been
chosen). The method s illustrated in Table 3-4. ' '

After this lengthy process we then can determine that the standardized
mortality rate for cancer deaths for 1933 is 2,510 per 1 million, or 2.51 per
1,000. Similar calculations can be performed for cancer deaths in 1973 and
from all other causes in both 1933 and 1973, always using the 1970
population as the standard. These calculations are shown in Table 3-5.

TABLE 3-4 Calculations for Standardized Mortaiity Rate

1 2 3 4 5 6
- Age-Specific Standard
Age 1933 Cancer Mortality 1970 Deaths
Range Pop. Deaths (Col. 3+ Col. 2) Pop. (Col. 4 X Col. 5)

TABLE 3-5 Standardized Mortality Rates per 1,000

1933 1973
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» e of our suspicions are therefore correct. People indeed died at a
ml?:lzrflaster rate fro?n other causes in 1933 than in 1973 —15.12 per 1,000
versus 8.91 per 1,000, respectively. There nevertheless appears to be an
excess cancer risk persisting in 1973 of about 20 percent (3.10 versus 2..5_1
per 1,000). However, this is considerably less tha'm the doubled risk origi-
nally calculated using the unstandardized mortality rates.

SUMMARY

" The standardized mortality rate is about the best estimate of _tr!e mortality
arising from a particular cause, and is virtually a prerequisite for any
comparison across different populations. Prol?ortlonal mortality rates are a
weak alternative, useful only in situations in which there are no denominator
available. ‘
dalttashould be kept in mind that the application of SMRs correct:f, for the
confounding effect of age, and possiblyof sex differences, but.that sall. To
conclude that any observed difference results from a partnc;ulqr cause
requires the elimination of all other possible causes. The point is nicely
illustrated by a final run at the 1933-1973 comparison. o
The difficulty arises from the use of a historical contrql, as described in
Research Methodology. To conclude that the obsewqd difference b_et\gveen
1933 and 1973 is caused by industrial pollution requires that we eliminate
from suspicion all the other differences between 1933and1 973.0ne differ-
ence in particular is staring usin the face—cigarette smokmg. Smohqg per
capita has increased steadily from the turn of the century until recent times,
and cigarettes are a known and strong causal factor in lung cancer. Thes?
facts suggest that we may further understand .the cause of the increase o
cancer deaths from 1933 to 1973 by separating respiratory cancer from
cancers of all other sites (since the latter are _only weakly related to smok-
ing). If we do this, and calculate SMRs for respiratory cancer and other s];tes,
all the differences between 1973 and 1933 can be accountgd for by a
sevenfold difference in respiratory cancer rates (Table .3—6). This of couEe
doesn't prove that smoking, rather than pol!utlon, is the cause of e
increase. However, it does suggest that there is no genera'l impact of air,
water, and foodbome chemicals on human health reflected in cancerrates.

TABLE 3-6 Respiratory Cancers vs Cancers from All Other Sites*

1933 1973

* Standardized mortality rates per 1,000
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MEASURES OF ASSOCIATION WITH CATEGORICAL VARIABLES

We began this discussion with the assertion that much of our fear about
cancer and the environment was a result of inadequate quantification of the
additional risk. To this point we have dwelt on measurement issues and
sought means to measure the health effects in an unbiased manner. We
now wish to explore methods to measure the strength of association
between two variables. _

We have already used some rough-and-ready measures of association.
We found in the last section that there was a sevenfold higher risk of
respiratory cancer in 1973 than in 1933. We could restate the data in two
other ways: (1) the risk of respiratory cancer increased from 0.09 per 1,000
to 0.69 per 1,000, or (2) there was a risk of cancer of 0.60 per 1,000
attributed to the different circumstances in 1973 and 1933. In the next few
examples we will formalize these concepts.

Let's begin with a new example that is related to therapeutic benefit. The
issue is the relationship between cholesterol and heart disease. For a long
time a strong association between serum cholesterol and heart disease has
been known; however, the implications of this finding were not clear. Did a
high level of cholesterol “cause” heart disease, or was it simply a marker of a
certain genetic predisposition? The key issue has been whether it could be

demonstrated that lowering cholesterol levels by diet or drugs would reduce
the rate of heart disease. ' _

This was finally demonstrated in 1985 by the Coronary Primary Preven-
tion Trial (CPPT), a randomized trial that was conducted at a number of
clinics in North America. The researchers began by screening nearly half a

~ million men to find a group of 3,900 who had very high serum cholesterol

levels (above 256 mg per deciliter) but as yet no evidence of disease. The
men also had to comply with a fierce regimen. The drug, called cholesty-
ramine, was foul-smelling, foul-tasting, and gut-wrenching, and had to be
taken in water six times per day. The researchers eventually found their
bunch of docile souls who would go along with the treatment. They were
randomized into two groups (the placebo was concocted to taste just as
bad) and followed for 7 to 10 years. After the dust settled there were 30
cardiac deaths in the drug group and 38 in the control group, figures that
were statistically significant. There was no overall difference in death rates,
but this won't concern us. The ways in which these data might be displayed
are discussed next.

RELATIVE RISK

The data from the cholestyramine study appear in Table 3-7. The
relative risk, as the name implies, is a measure of the likelihood of
occurrence of the target event (death or disease) in those exposed and not
exposed to the agent of interest. It is defined as follows:

Relative Risk = Mortality rate (or incidence) in exposed group
Mortality rate (or incidence) in unexposed group
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TABLE 3-7 Data from Cholestyramine Study

Cardiac
Deaths

- Alive Total

Cholestyramine . 1,900 -

Placebo 1,906

Mortality rates in the two groups are 30 per 1,900 and 38 per 1,906.
Thereforet,ythe relative risk from cholestyramine is 30/1,900 +~ 38/1,906
=0.792. To put it another way, the risk of cardiac death in the treated group
-was 1.00 — 0.792, or 21 percent lower than in the placebo group, a risk

duction of 21 percent. ' .
l'eThe data can K; presented in another way. We could turn _the question
around and ask what the relative risk of cardiac death resuiting from the
absence of a drug is. This relative risk is the inverse of the previous
calculation: 38/1,906 + 30/1,900 = 1.26.

ETIOLOGIC FRACTION

Closely related to the notion of risk reduction is a concept c.:alled tl}e
etiologic fraction (EF). When considering a risk factor for a c!lsease, in
this case high cholesterol levels, we are interested in what fraction of the

cases of cardiac death has high cholesterol levels as its etiology. Since there

were 38 deaths in this cohort when high cholesterol levels were present, a‘nd
30 deaths when this risk factor was absent, we could dgﬁne the proportion
of cardiac deaths, or the EF, as follows:

EF — Mortality in exposed group — Mortality in unexposed group
B Mortality in exposed group

‘For the CPPT trial (see Table 3-7) the etiologic fraction is (38 —30) <~ 38
= 21 percent. This is the same number as, although a different concept
than, the risk reduction we calculated earlier.
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ATTRIBUTABLE RISK

The relative risk gives some indication of the increased risk (inthe case of
arisk factor) or benefit (in the case of a therapy) in relative terms. However,
we would often like to examine the actual increase or reduction in incidence
or mortality attributed to the cause. This is called the attributable risk
(AR), and is defined as follows: ‘

AR = Mortality rate (or incidence) in exposed group — Mortality rate
(or incidence) in unexposed group

In the cholestyramine example (see Table 3-7) the attributable risk of
cardiac death (attributable to the absence of the benefit derived from
cholestyramine) is 38/1,906 — 30/1,900 = 4.1 per 1,000.

The example nicely illustrates the important differences between the two
concepts of relative risk and attributable risk. The CPPT trial began with a
highly selected cohort of people with very high cholesterol levels, followed
them foralongtime (7to 10 years), and indeed demonstrated a statistically
significant risk reduction of 21 percent. However, this amounted to a
reduction in risk of cardiac death of only four per 1,000, compared with a
total rate of death in both groups of about 70 per 1,000.

RELATIVE ODDS

The concepts of association we have discussed so far work well for most
situations in which we wish to examine the effect of a particular risk factor on
the subsequent occurrence of disease. However, there is one study design,
the case-control study (see Research Methodology), in which things don't
quite fit. Case-control studies are used in situations in which the likelihood of
developing disease is low, or there is a long latency before the onset of
disease. Typically, both these conditions apply to the investigation of risk
factors in cancer. In these circumstances we assemble a group of people
with the disease (cases) and an appropriate set of people without disease
(controls), usually of the same size, and we examine the exposure of the two
groups to the risk factor of interest.

As one example, continuing our cancer theme, Table 3-8 was derived
from one of the original studies linking lung cancer to smoking.

The fact that the rate of lung cancer overallis so high s a sure clue that we
are dealing with a case-control study, since if these data were based on a
cohort study that assembled persons who did and didn'’t smoke, we would

- arrive at the alarming conclusion that the overall rate of lung cancer was

about 34 percent. However, if we contirue along the lines we had done
previously, we could calculate a risk of cancer in the exposed group of
659/684, or 96 percent, and in the unexposed group of 984/1,332, or 74
percent. The relative risk of lung cancer is then, using the previous
methods, 0.96 -~ 0.74 = 1.30. Although the final result seems plausible, the
intermediate steps are insane because of the nature of the design. In fact,
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TABLE 3—f8 Ldng Cancer and Smoking

Cases Controls Total

Smoker 1,643
Nonsmoker 373
Total © 1,332 2,016

cancer is much rarer than we have made it out to be; the controls

l\\l:i':l?out cancer are sampled from amuch larger population of healthy folks
an are the cases. . .

. Although we cannot calculate from these data an actugl n§k of getting
lung cancer, we canframe thingsina different way. We begin with the cases
and play a gambling game, asking the odds that this persor was exposed cti(i)
the suspected carcinogen. When a gambler says that the p.dds of acandi-
date’s being elected are 1:4, he is saying that the prol?ablhty of his being
elected is one-quarter that of his not being elected, and sincethese probab!l-
ities add to one, a little mental arithmetic shows that the probablllty tl'ga-t this
candidate will be elected is 20 percent. Similarly, the odds thatan individual
with lung cancer was exposed to tobacco are A/C=659/ ?5 =26.4;and the
odds that an individual in the control group was exposedis B/D = 984/348
'=2.83. The relative odds of lung cancer from tobacco exposure are then:

. __ Odds of exposure for cases  _ A/C
Reladve Odds Odds of exposure for _controls B/D

= 26.4/2.83
=933

DIAGNOSTIC TESTS

The twentieth century has seen dramatic changes in c'iisease patterns in
- the Western world. Since the advent of effective antibiotics, vaccines, anfi,
perhaps most important, adequate nutrition and sanitation, most peoplein
industrialized countries can look forward to a full life. Our present preoccu-
pation is with chronic, lifestyle-related diseases for which there are unlikely
to be any “magic bullets” in the foreseeable future.
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One result of these changes is that epidemiologists have moved away

from their historical roots in the study of epidemics to such diverse activities

as the study of occupational risks or trials of therapeutic agents, in order to
maintain employment. (One result of this shift in employment patterns is

~ that books such as this are now required to tell health professionals what

epidemiologists do.) ‘
However, thanks to a new infectious disease, AIDS, that has all the
devastating characteristics of the traditional scourges of mankind like
cholera and the black plague, epidemiologists find themselves the center of
attention at cocktail parties. We need not devote any space in this section to
describing the natural history, prevalence, modes of transmission, or risk
factors of AIDS —these are taught to elementary school students. However,
we will use this disease as an instructive example of a measurement
problem, the application of diagnostic tests. :
There are now two high-risk populations for AIDS—homosexuals
because of sexual contact and street drug users because of the sharing of
contaminated needles. Before the advent of adequate screening tests, there
was a third high-risk segment — people requiring blood transfusions for any
reason. In particular, a significant number of hemophiliacs acquired AIDS
as a result of their exposure to large numbers of transfusions. However,
since 1985 all blood products are routinely screened for AIDS using the
enzyme linked immunosorbent assay (ELISA) test. L
Asdiagnostic tests go, ELISA is a very good one indeed. This is fortunate,
because the consequences of the test are severe. If an individual has AIDS
antibodies, there is at least a 30 percent chance of developing the disease,

~ and AIDS has nearly a 100 percent mortality. The consequences of a false

positive are also severe. If we tell someone he/she has antibodies when this
isn’t the case, we are causing massive anxiety and lifestyle changes. Con-
versely, if we miss blood products containing antibodies, the chance of
infecting someone is high. '

Let us examine the performance of this test in two populations: (1) in a
homosexual population, in which the prevalence of AIDS antibodies is
about 50 percent, and (2) in routine screening of blood donations, in which
the prevalence of antibodies is about 0.2 percent.

TRUE POSITIVE, FALSE POSITIVE, TRUE NEGATIVE, AND
FALSE NEGATIVE RATES ‘

Let us imagine that the ELISA test is being used as a diagnostic test for a
high-risk population, e.g., homosexuals in New York City. Actual figures for
this group indicate that the prevalence of the AIDS antibody is about 50
percent. :

To examine the test performance, we could screen a group of individuals
and compare the test.result with their true status. Truth isn't easy to come
by, butin this case there is a more expensive, but virtually perfect test called
the Western blot test. We could take samples from the group and perform
both tests on the samples. If we were to screen 1,000 individuals with the
test and compare the test result to the “gold standard,” the results would be
similar to those found in Table 3-9.



éo- PDé Epidemiology

TABLE 3-9 Results of- ELISA vs Western Blot Test In Screening of
1,000 Homosexuals from New York City

Gold Standard (Western Blot)

No
" Antibodies Antibodies Total
o - .
ELISA
- - -
Total 1,000

The characteristics of tests are usually described in terms of the letters
(A, B, C, D) in the four cells of the table. One way of describing the test's
performance is as follows:

People with positive test and disease
All people with disease

= A/(A + C) = 498/508
= 98.03 percent

True Positive Rate =

People with negative test and disease
‘All people with disease

= C/(A +C)=10/508
= 1.97 percent

False Negative Rate =

PeOple with negative test and no disease
All people without disease

= D/(B + D) = 488/492
= 99.19 percent

True Negative Rate =

People with positive test and no disease
All people without disease

= B/(B + D) = 4/492
= 0.81 percent

False Positive Rate =
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SENSITIVITY AND SPECIFICITY

Another way of describing the test’s characteristics has its origins in the
biochemistry laboratory. We speak of sensitivity — how sensitive the test is
at detecting disease — and specificity —how good the test is at rejecting
samples that are not diseased. Let's use the data from Table 3-9.

The test sensitivity is a measure of the test’s ability to detect people with
the disease, and is measured as follows:

Number with disease who have a positive test

Number with disease

= A/(A + C) = 498/508
= 08.03 percent

Sensitivity =

Conversely, the test specificity measures the ability of the test to correctly
identify people who do not have the disease, and is measured as follows:

Number without disease who have a negative test

Number with disease

= D/(B + D) = 488/492
=99.19 percent

Specificity =

Asyoucan see, sensitivity is the same as true positive rate, and specificity
is the same as true negative rate.

POSITIVE AND NEGATIVE PREDICTIVE VALUE

The descriptions thus far give some picture of the characteristics of the
test. However, the denominator for both sensitivity and specificity assumes
some knowledge of the true state of affairs, since it is based on people who
do or don't have the disease. Clinicians rarely have the luxury of a “gold
standard”; if they did, they wouldn't be doing the test. Putting it another way,
assume you are about to advise someone who has just received a positive
ELISA. Do you tell the individual that he/she has AIDS antibodies? What is
the chance that someone with a positive ELISA does not have antibodies?
These probabilities are erhbodied in the concepts of positive predictive
value and negative predictive value, in which the denominators are
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based on people with positi\)e and negative tests. Again using the data from
Table 3-9, these values are measured as follows;

People with positive test and disease
All people with positive test
=A/(A+B)

= 498/502
- = 99.20 percent

Positive Predictive Value =

_ People with negative testand no disease
All people with negative test
= D/(C+ D)

= 488/498
= 97.99 percent

Negative Predlctlve Value

RELATIONSHIP BETWEEN PREVALENCE AND
PREDICTIVE VALUE

The data we have presented so far give a fairly encouraging picture of the
ELISA test. If someone has a positive test, we can be 99.2 percent certain
that person really has AIDS antibodies. However, the calculations were
based on a situation where the prevalence of antibodies was high (about 50
percent). In different circumstances the picture may not be as rosy. For
example, experience in screening blood donations has shown that the
prevalence of AIDS antibodies is actually closer to 0.2 percent. As pointed
out over 3 decades ago, this change in prevalence may drastically affect the
usefulness of the test. _

Working out a new contingency table (as in Table 3-9) we now have a
prevalence of 0.2 percent; two people out of the 1,000 will have antibodies,
and 998 will not. Because the prevalence is so low, imagine screening
1,000,000 units of blood, of which about 2,000 will have antibodies
(whether we use 1,000 samples or 1,000,000 does not affect the results at
all, it just eliminates decimal points during the calculations). Since the test
has a sensitivity of 98.0 percent, 0.98 X 2,000 = 1,960 persons will test
positive with ELISA (cell A) and 40 will test negative (cell C). Now there will
be 1,000,000 — 2,000, or 998,000 normal units of blood. We know from our
previous data that the specificity of the test is 99.2 percent; there will be a
total of 0.992 X 998,000 = 990,016 normal units that test negative (cell D).
Conversely, there will be 998,000 — 990,016 = 7,984 normal units of blood
that have positive ELISA tests (cell C). The new data appear in Table 3-10.
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TABLE 3-10 Prevalence of AIDS per 1,000,000 Units of Blood

Gold Standard (Western Blot)

No
Antibodies Antibodies Total

Positive

9,944

ELISA
Negative 990,016 990,056
Total 2,000 998,000 1,000,000

If we now recalculate the predictive values, they look like this:

Positive Predictive Value = 1,960/9,944
= 19.7 percent

Negative Predictive Value =990,016/990,056
= 99.99 percent '

The picture is now very different than in the first situation. If a person has a
negative test, there is virtual certainty that he/she truly is AIDS-negative.
However, a positive test is nearly uninterpretable because more than 80
percent of the positive test results come from people who don't have
antibodies!.

In actual practice any blood that tests positive is sent for a repeat ELISA
and a Western blot test. If ELISA remains positive and the Western blot is
negative, the blood is discarded but the donor is not told. If they are both
positive, the donor is informed and contacts traced.

Thus in general, the prevalence of disease has a profound effect on the
usefulness of a test. If the prevalence is low, the positive predictive value of
the test is low and the negative predictive value high. Conversely, if the
prevalence of disease is very high, the negative pledlctwe value is low but
the positive predictive value is high.
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. BAYES’ THEOREM

Inthe previous discussion we calculated the probability that a person with
a positive ELISA had AIDS antibodies, given known data about the preva-
lence of antibodies and the characteristics of the test. However, we had to
take a roundabout route by calculating a new contingency.table (see Table
3-10) and then working out the appropriate values. There is an algebraic
shortcut, called Bayes’ theorem, that permits this calculation directly. To
do the calculation, we will also introduce some new symbols that frequently
appear in the epidemiologic literature:

P(D) .= Probability of disease before the test
= Prevalence = 0.2 percent

P(T+ | D) = Probability of positive test given the disease
= Sensitivity = 98.0 percent

P(T+ | D) = Probability of positive test given no disease
. = (1 — Specificity) = 0.8 percent

PT—| D) = Probabilify of negative test given the disease
= (1 — Sensitivity) = 2.0 percent

P(T— | D) = Probability of negative test given no disease
= Specificity = 99.2 percent

According to Bayes' theorem, the probability of disease given a positive
test, P(D | TV) (i.e., the positive predictive value), is as follows:

P(D) x P(T+ | D)
P(D) X P(T+| D)+[1.0 —P(D)] X P(T+ | D)

P(D| T+) =

__ 02X98 _ 196
(02X 98)+(08%X99.8) 99.44

=19.7 percent

A similar calculation could be done to get the negative predictive value.

Bayes’ theorem can also be used in an iterative fashion. If we had a situa-
tion involving a series of laboratory tests, we could now calculate the post-
test probability for the second, third, and subsequent tests. [n each case we
would use the calculated posttest probability from the previous test as the
pretest probability for the calculation of the next test.

RECEIVER OPERATING CHARACTERISTIC CURVES
One measure that is frequently employed for evaluating the effectiveness

of diagnostic systems is the receiver operating characteristic (ROC) -

curve. Particularly popularin radiology, it has roots in electrical engineering
and psychophysics.
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Imagine a laboratory test that has continuous values, such as cardiac
enzymes, and consider the problem of attempting to find an appropriate
cut-point where any value above the point is considered a positive (i.e.,
indicative of myocardial infarction), and any point below is considered

- negative or normal. If we set the point too high, we will miss a number of
mild myocardial infarctions, but will avoid false positives. Conversely, a
point set too low will catch all the myocardial infarctions at the cost of filling
cardiac care unit beds with normal (non-myocardial infarction) patients. |
This situation is illustrated in Figure 3-1. ,

As we move the cut-point from right to left, we will initially pick up true
positives and few false positives. However, as we pass the center of the
myocardial infarction distribution, the rate of pickup of the false positives
will increase, and the true positives decrease, to the point that nearly all the
increase is false positives. Plotting the true positive rate on the Y-axis and the .
false positive rate on the X-axis, we generate the ROC curve, as in Figure ' ‘
3-2.

The ROC curve has some interesting features. First, we note that a perfect
test would pick up only true positives at first, then after the true positive rate
is 100 percent, only false positives; this describes a curve going vertically
along the Y-axis and then horizontally along the top. Conversely, a useless
test picks up both true and false positives at the same rate, and traces outa
line at 45 degrees. The extent to which the ROC curve “crowds the comer”
is a measure of the value of the test. This is measured by the area between
the curve and the 45 degree line. Second, the best cutoff to minimize overall
errors occurs when the tangent to the line is at 45 degrees; displaying the
data this way therefore permits a rational selection of cutoff. The advantage
of the ROC approach is that it permits a clear separation between the
intrinsic value of the test, as captured in the area under the curve, and the
errors associated with an inappropriate choice of cutoff.

TRUE(-) TRUE(+)

FALSE(+)
|

M.1.

T

CUT POINT

Normal

Figure 3-1 Determining the cut-point of a test for myocardial infarction.
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Figure 3-2 ROC curve.

ACCURACY

As yet we have not considered any measure of the overall accuracy of the
test. One approach that is very straightforward is to simply sum up the
numbers on the diagonal of the table, cells A and D, and place them over
the total of all cells. Let's use the data from our two AIDS examples (Tables
3-9 and 3-10).

The overall accuracy of the test, based on data from Table 3-9, is (498
+ 488)/1,000 = 98.6 percent. For the lower prevalence situation in Table
3-10, the accuracy is (1,960 + 990,016)/1,000,000 = 99.198 percent.
Even though the test is much less useful in the low prevalence case, the
accuracy has improved, since the huge numbers of true negatives have
predominated in the calculation of accuracy. Because of the possibility of
misleading results from this approach, most assessments of accuracy are
performed by correcting for chance agreement using a statistic called
Cohen’s Kappa.

CHANCE CORRECTION USING COHEN'S KAPPA

As we have just seen, the likelihood of agreement between a test result
and a “gold standard” is affected by the prevalence of disease. In the
extreme case we could consider the application of a clinical sign, right-
handedness, to a classical “disease” of Victorian times — self-pollution, or
masturbation. Right-handed people are in the majority with about 90 per-

.
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TABLE 3-11 Prediction of Depression from Test Resuits

Depression

Present Absent

o - -

Test Resuits

e - -

cent of the population. If we are in a population where everyone does “it,”
the test will be right 90 percent of the time, without conveylng any informa-
tion whatsoever.

To avoid this trap it is desirable to correct for chance agreement. Takinga
little less extreme example, consider the data in Table 3-11, which predict
depression as diagnosed by expert interview using DSM 1l cntena, froma
self-completed questionnaire.

The accuracy, as determined before, is (A + D)/N=(18 +63)/100=81
percent, What agreement would we expect by chance? Chance means that
there is, in fact, no association between the two variables. Consider first the
A cell. We know that on the average 30 percent of all people in the sample
have depression, or 30 people. If there is no association between the two
variables, we would expect that the same proportion of people with and
without depression would have a positive test, simply equal to the overall
proportion of positive tests, or 25 percent. So by chance, 25 percent of the
30 depressed people, or 7.5 people, would be in cell A. Similarly, there
should be 75 percent of the nondepressed people, or 52.5 people, in cell D.
The agreement expected by chance is (7.5 + 52.5)/100 = 60 percent. We
actually observed 81 percent. It's not necessary to figure out the numbersin
cells B and C because we don't use them in the calculation. The chance
corrected agreement, called Kappa, is defined as:

Observed agreement — Agreement by chance _ 0.81 — 0.60
1.0 — Agreement by chance 1.0 — 0.60

= 0.21/0.40 = 0.525

Asaresult, the agreement corrected for chance has been reduced from 81
percent to 53 percent.

Kappa =



'88 * PDQ Epidemiology

MEASUREMENT WITH CONTINUOUS VARIABLES

Historically, epidemiology was concerned with the distribution in time
and place of disease epidemics; in more recent times clinical epidemiology
has focused on the testing of therapies directed to prolonging life by
reducing the incidence of such catastrophic events as heart attacks and
strokes. In these situations the unit of analysis is the case of disease or
death, and meéasurement issues focus on the verification of presence or
absence of disease.

However, physicians and epidemiologists are increasingly coming to
recognize that, for many diseases, there is little to be gained in quantity of
life from foreseeable advances in biomedicine and there is much more
potential for gain in quality of life. Innovations such as palliative care and
geriatric medicine are explicitly not directed to the cure of disease or
extension of life; rather, they are an attempt to improve the quality of life.

From the perspective of epidemiology, research in this area presents new
measurement challenges. The measurement of quality of life is a new
science; different methods proliferate, and seldom yield the same resullts.
There is possibly more error of measurement than might be expected in
categorical measures like diagnosis. Conventional approaches to evalua-
tion of measures, such as comparison with a “gold standard,” are inappli-
cable, because no such criterion currently exists, and no clinical equivalent
of the autopsy or biopsy will ever be available. Epidemiologists must
acquire new skills, borrowed from such disciplines as psychology, educa-

tion, and economics, in order to understand and contribute to the .

development of these measures. ,

With ‘rare exceptions, these outcomes are based on continuous
measurernent, originating in rating scales or checklists completed by
observers or patients. Approaches to the measurement of association with
these measures involve unfamiliar concepts like reliability and construct
validity. Usually analysis is conducted using parametric statistics, which
assume an interval level of measurement, and normal (bell-shaped) dis-
tributions. This section briefly reviews some of these concepts. We are not
trying to be comprehensive; instead, we will recommend additional read-
ings for readers who wish to venture further.

MEASURES OF ASSOCIATION

To examine the issues of measurement with continuous variables, we will
use an example from theumatology. The issues here are prototypical of the
issues we raised in the beginning of this discussion. The diseases of
rheumatology — rheumatic arthritis, osteoarthritis, ankylosing spondylitis,
and lupus — are rarely fatal, but often are severely incapacitating because
theyinflict pain, deformity, and dysfunction on their victims. To examine the
efficacy of their therapies, rheumatologists have developed a large number
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of measures of disease severity. Some emerge from the laboratory, such as
erythrocyte sedimentation rate and rheumatoid factor, but appear to have
little relationship with clinical measures of function. Some appear to be
“objective” clinical descriptions of disease process, such as counts of
involved joints or erosion counts (from observations.-of bone erosions on
hand roentgenograms) and walk times. On closer scrutiny, however, these
objective descriptions appear to have a great deal of variation among
observers and relatively little relationship with measures of the patient's
function. Finally, some measures are based on the patients’ own assess-
ment of their function and health, and run the gamut from a simple 10 cm
line (called a visual analog scale, presumably to obscure its simplicity) on
which the patient puts a mark to indicate his perceived health, to indices of
function containing tens or hundreds of questions. N

To make sense of this potpourr, it is essential to review empirical
evidence that the measures are doing what was intended by their makers.
When these questions are examined, the evidence falls into two broad
classes. The researcher assessing reliability asks whether the measures
are giving the same answer over different situations (eg., diffefent
observers or the same observer on two occasions separated by a short time
interval). The researcher studying validity asks whether the measure is
assessing what is intended. Does the index of function related by the patient
really assess function, or is the score related to the patient's mood, social
status, or whatever?

Because the measures are continuous, we cannot simply place the data
into a 2 X 2 table as. we used before. (We could do this, but the shoehom act
comes at an awful cost of loss of information, e.g., any height above
5'6” [168 cm] is classified as tall.) Instead we must measure the degree to
which an individual who is high on one measure or occasion is high on a
second measure or occasion, and the converse. The methods to develop
these measures are explored further in the next discussions.

PEARSON CORRELATION

By far the most common measure of association for conﬁnuoug vari-
ables is the Pearson product-moment cormrelation. it was invented in thg
early 1900s by one of the founders of modern statistics. The conelat!on is
based on the idea of fitting the data by a straight line, as illustrated in Figure
3-3.
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Joint Count_

Sedimentation Rate

Figure 3-3 Association between erythrocyte sedimentation rate and a measure of active joints
in patients with rheumatoid arthritis.

[4

The Pearson correlation is a number between —1 and +1. It equals O if
there is no relationship, and 1 if there is a perfect linear (straight line)
relationship. There is one minor addition: if the slope is negative, that is, if
the joint count decreases with increasing sedimentation rate, the correla-
tion is preceded by a minus sign. Therefore a perfect negative relationship
has a correlation of —1. Pearson correlations of various sizes are picturedin
Figure 3-4. '

As you can see, the more the individual points deviate from the straight
line, the lower the correlation. With a perfect correlation (+1 or —1), all the
points fall on the line. It should be evident from Figure 3-4 that a correla-
tion of 0.8 indicates a fairly good association. Conversely, a correlation of
anything less than 0.3 is hardly worth the excitement, statistically significant
or not. o

¥ -

» i
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Flgure 3-4 Correlations of various sizes. A, r=1; B, r=0.9,C,r=05;,D,r=0.

INTRACLASS CORRELATION_

The Pearson correlation is a perfectly appropriate measure of association
to express the degree of linear relationship between two variables. However,
under certain circumstances we demand'a more stringent measure of
association. This situation usually arises in the measurement of agreement
between observers, when we don’t simply want assurance that a patient
scoring high by one observer will also be scored high by the other observer;
we want to be sure that the observers are actually giving similar numbers.

Suppose we recruited two rheumatologists to examine hand joints on a

+ series of patients with theumnatoid arthritis and work out the total number of

inflamed or swollen joints (Fig. 3-5). It could happen that one observer set
very much lower thresholds for what he chose to call “inflamed” than the
other, so that for every patient his total was exactly two more (i.e., if one
observer said 12 joints, the second said 10, and if one said four, the other
said two). ' :
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:;Iagt:ret 3-8 The number of hand joints judged as inflamed by two rheumatologists for various
nts.

The Pearson correlation simply demands that there is a strong associa- -

tion between the raters — the highest scoring patients for Observer 1 are
also the highest for Observer 2, and the lowest for Observer 1 are the lowest
for Observer 2. Since this is the case and the points all lie exactly on a
straight line, we would get a Pearson correlation of +1. However, by most
standards the agreementis terrible; the observers never give the patient the
same count.

To getaround this problem, the Pearson correlation has been replacedin
most circles by the intraclass correlation (ICC). The intraclass correla-
tion is still expressed as a number between 0 and 1; however, the ICC
measures not only the association between the raters, but also the
agreement.

Although much is made of the difference between association and
agreementand the relative advantages of the intraclass correlation over the
Pearson correlation, in most real-world situations the major vanability in the

data is from. apparently random error. Under these circumstances the two
measures give identical results. Furthermore, if we treat a 2 X 2 table as a.

series of points having values of (1,1), (0,0), (1,0), or (0,1 ), the intraclass
correlation and Kappa yield identical results. For once we can get conver-
gence among differing approaches.

AR TSR RN

give you the idea.
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RELIABILITY

Reliability is, as we indicated, a measure of the extent to which a measure
is reproducible, or gives the same results, over different situations (e.g.,
different obseivers or different days). However, this reproducibility is defined
in a very special way by comparing the variability across situations (error
variance) to the true variability among patients (patient variance). The
reliability coefficient is defined as follows:

Variance due to patients

Reliability = - i
Variance due to patients + Error variance

In other words, the reliability expresses the proportion of the variability in
the measures that is caused by true variability among patients. The
implication of this definition is that if the patients we are studying are truly
homogeneous with respect to the attribute of interest, the reliability of the
measure will be near 0; conversely, if there is great variability among
patients, there will likely be higher reliability. The reliability is a measure of
the extent to which we can differentiate among patients on a particular
attribute. ,

Although this definition is a bit hard for egalitarian folks to accept, it rests
on the simple premise that the goal of measurement is to distinguish
among people on a particular attribute. If all the people in the population
have the same value of a particular quantity, why bother to measure it?
Simply assume that the next person will have that value too.

It is not too difficult to demonstrate that the phenomenon is completely
analogous to the discussion about the effect of prevalence on the perfor-
mance of a diagnostic test. Reliability is like the chance corrected accuracy
of atest. If the prevalence of disease drops, this is analogous to the patient

population becoming more similar, and the reliability of the continuous

measure and the accuracy of the test both fall.

There are some other terms usually associated with reliability, most of
which are self-explanatory. Interobserver reliability examines the degree of
agreement among different observers. Test-retest reliability involves
administering a test or measure to a group of patients on two different
occasions and examining the correlation. Split-halves reliability is used in
longer tests, and involves splitting the test items into two halves at random
and examining the correlations between subscores from the two halves of
the test.

There are a number of other specific forms of reliability, but this should

| VALIDITY
FACE AND CONTENT VALIDITY

Having demonstrated that a measure is reproducible, it remains to be
shown that it is measuring what is intended. Somietimes this is straightfor-
ward and noncontroversial; for example, to show that a mercury manometer
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is measuring blood pressure validly, one might compare blood pressure
values obtained this way with direct measures of arterial blood pressure.
More frequently the situation is not so straightforward. How do you dem-
‘onstrate that your new measure is really assessing self-concept, iliness
behavior, locus of control, or quality of life? One way is to argue that it
measures trait X because trait X is what it measures, an argument that is
invoked in a variety of forms for the measurement of intelligence. However,
-this approach is a little circular; a variation on the theme that is a little less
egocentric is to approach a group of experts and ask them whether the
measure looks like a reasonable measure of the concept as they under-
stand it. This approach is termed face validity. You could also ask them if
the measure appears to contain all the important concepts, behaviors, and
elements of the concept. If the answer is “yes,” you have also attained
content validity. _
There are better approaches to the measurement of content validity. For

example, you might observe patients to ‘see behaviors, interview them or
review records, or base the instrument on previous reported measures. All
of these strategies are appropriate to ensure that the measure contains the
desired content. However, in the final analysis the assessment of face and
content validity is, with rare exceptions, based on the opinion of experts.
Since “old boy” networks are the norm in most academic disciplines, in that
we associate with people who think like we do (i.e., correctly), these must be
regarded as weak tests of validity.

CRITERION VALIDITY

As we indicated, measures of validity based on expert judgments are
regarded in general as weak tests of validity. Perhaps the strongest
approach to validity is the assessment of criterion validity, which involves
comparison with a “gold standard.” In tum, this is divided into two forms
that differ only intime. If the comparison is made at the same time (i.e., both
measures are administered together) the approach is called concurrent
validity. If the measure is used to predict future status, such as confirma-
tion of a disease at autopsy or admission to hospital, it is called predictive
validity. The index of criterion validity is most often a correlation coefficient
between the scores on the new test and on the old (or predicted) one.

The comparison of blood pressure reading with a mercury sphygmo-
manometer with arterial blood pressures is an example that highlights both
the use of a “gold standard” and the reason for developing a new measure,
namely, reduced cost or risk. However, such true “gold standards” are
difficult to come by, and one is frequently left in the situation of comparing
the new measure with another better accepted, but arguably inferior
measure of the same attribute. One example of this is the measurement of
depression. Although new measures proliferate, nearly all are compared
with one of two scales — the Beck Depression Inventory or the CES-D scale.
Since both standards are short and cheap, the only reason to develop a new
measure is that it will be better; however, this is difficult to prove by simply
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comparing with exising measures.. Under these circumstances the
expected correlation of the two measures should be high, but one would not
anticipate correlations too close to unity; if it were nearly 1.0, the two tests
are measuring almost exactly the same thing and there is little reason to
develop the new one.

CONSTRUCT VALIDITY

Probably the most frequently applied, but poorest understood measure
of validity is called construct validity. It is used in circumstances in which
there is no other measure of the attribute under study. Instead of testing the
relationship between the new measure and some other measure of the
same thing, we invoke a theoretical construct that describes the relationship
between the attribute under scrutiny and other attributes. We then examine
the relation between these two measures, and if it is in the expected
direction, we have evidence that both the measure and the hypothetical
construct were right. However, if there is no relationship between the two
measures, we have no way of determining whether our measure or our
theory was wrong.

For example, if we are developing a measure of quality of life of patients
with rheumatoid arthritis, we might hypothesize that the measure is strongly
related to measures of function like morning stiffness or walk time, and
relatively poorly related to measures of disease process like joint counts or
sedimentation rate. Further, since we would hope that it is a relatively pure
measure of the effect of the particular disease on perceived quality of life, we
may further hypothesize that scores are uncorrelated with measures of
depression. Finally, we can examine hypotheses about differences between
groups, for example, that inpatients are likely to score poorer than
outpatients. :

It is evident that in the construct validity game there is no single study or
hypothesis that clinches the case. Some hypotheses will be right and some
will be wrong. Rather, the judgment of validity depends on the weight of the
evidence being in the expected direction.

MEASUREMENT BIAS

In the previous section on research methodology we described how
incorrect conclusions may result from design flaws. Biases such as the
Berkson's or Neymann bias can yield estimates that are systematically
higher or lower than the true value.

Unfortunately, research design errors are not the only source of bias.
Large distortions can result from biases in measurement. There are innu-
merable sources of measurement bias; many psychologists have made
careers out of cataloging how people can be induced to distort their
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estimates one way or another. One of the most.disturbin examples deri
from choices resembling the following: 9 P ves

“You are responsible for the care of '100, patients who have a fatal
disease. You are given a choice between two drugs: Drug A has a 60

percent chance of saving everyone; Drug B will save 60 of the 100
patients. Which will you choose?”

Undef these circumstances, most subjects choose Drug B. However, the
question can be framed in the logically equivalent way: :

_ “You are responsible for the care of 100 patients with a fatal disease.
You are given a choice between two drugs. Drug A has a 40 percent
chance of killing all of the patients. Drug B will result in the death of 40
of the 100 patients. Which will you choose?”

, Whep the question is framed in this way, most respondents choose Drug
A. Obviously the way a question is asked can lead to radically different
responses. There are many other ways that data can be willingly or unwill-
ingly distorted by unsuspecting investigators. Our purpose will be served by
illustrating a few. '

However, before we illustrate a few different kinds of bias, let's distinguish
bet\fvegn two concepts —bias and random error. Bias is a systematic
devn.ahon from the correct value of a particular variable, The effect of bias is
to distort the estimate of that variable, for example, to increase the sample
mean or decrease the prevalence of some trait. In random error, on the
other hand, there is also a deviation from the true value, but because it is
random the deviation sometimes adds to the estimate and sometimes
takes from it. In the long run (i.e., with a lot of subjects) these deviations
cancel each other out. The effect is to increase the variability of the scores,
but random error does not affect the estimate of the variable. For this
reason random error can be dealt with by statistics. Since bias is a
consistent distortion from the true value, it cannot be corrected by any
statistical manipulation, and thus is more insidious.

DIAGNOSTIC SUSPICION BIAS

_ (J_nder certain circumstances the rate of occurrence of a diagnosis can
dgpart from expectations simply because of an enhanced index of suspi-
cion on the part of the diagnostician. This bias may be highly individualized
ar]q short term. One well-documented bias of individuals is illustrated by the
clinical anecdote that goes something like this: “The funniest thing hap-

pened. Saturday night in the ER | diagnosed the first case of Somaliland .

Camelbite Fever I've seen in 20 years. This week | saw four more cases in
my officg. Tt_lere must be a real epidemic going around!” A more likely
explanation is the availability bias. The one case in the ER is readily

available in memory, and is likely to be recal \ Is readil
comes along. y recalled when anything similar
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A more long-term and widespread diagnostic suspicion bias is the syn-
drome syndrome. Over the decades it is easy to show how the popularity of
certain diseases has waxed and waned. In the 1920s a common syndrome
was “self-pollution”, or masturbation. The clinical syndrome was well des-
cribed, and there were literally institutions filled with depraved little self-
polluters. In fact, W.K. Kellogg ran a sanatorium for these lost souls in Battle
Creek. .

Lest you feel this is a perversion of the early days of medicine prior to the
advent of sophisticated diagnostic procedures, there are many current
examples. Alzheimer's disease has apparently reached epidemic propor-
tions. Some of the increased incidence is a result of better diagnostic tools
and more old people around to get it. Nevertheless the syndrome was first
described in the early 1900s. Presumably, until recently doddery old ladies

. were simply passed off as doddery old ladies. Now, if anyone over 65 forgets

where they left their car keys, Alzheimer's is the first diagnosis to spring to
mind.

We also alluded to the ureaformaldehyde foam insulation (UFFI) issue
earlier. The interesting tale about UFFI is that it was installed for several
decades in Europe prior to its arrival in North America. Once here, relatively
few problems arose until the media announced all the lethal consequences
of the stuff. Following that point physicians everywhere were diagnosing
any number of complaints, from headaches to ingrown toenails, as result-
ing from UFF1 poisoning.

In the Preface we mentioned one study in which physicians “found”
tonsillitis requiring surgery in about 45 percent of kids, even when two other
sets of physicians declared the kids clean (or at least not ill). Here again, the
expectation of finding a disorder biased what was seen.

SOCIAL DESIRABILITY BIAS

Personality psychologists now routinely include a social desirability
scale in many of their measures. The notion is that people, when asked
sensitive questions about, for example, alcohol consumption or sexual
practices, will consciously or unconsciously bias their responses toward the
socially acceptable answer. If the bias is deliberate and conscious, itis called
“faking good,” and if unconscious, “social desirability.” In either case the
results are the same — an underestimate of the true prevalence of undesir-
able behaviors.

Several techniques have been developed to detect the presence of social
desirability and to fix it if present. Many psychological scales contain
imbedded social desirability scales; for example, only saints can truthfully

~ answer “true” to the statement ] have never stolen anything.” Alternatively

methods such as the random response technique are designed to elicit
better measures of the prevalance of unacceptable behaviors.
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C.R.A.P. DETECTORS
C.R.A.P. DETECTOR IlI-1

Question An investigation of the usefulness of exercise ECGs was con-
ducted using patients who had been admitted to a coronary care unit
(CCU). The ECG was compared with findings from coronary angiography —
a very expensive and risky procedure. For obvious reasons the researchers
had difficulty recruiting a large number of “normal” subjects to undergo
angiography. So they took 80 men off the street, did ECGs on them (which
were normal of course), assumed that they would have normal angiograms,
and added them to the negative ECG-negative angiogram category. The
results looked very good indeed: sensitivity was 64 percent and specificity
was 93 percent. Subsequent applications of exercise ECGs in ambulatory
settings have shown that it is not what it was cracked up to be, and showa
sensitivity of only 33 percent. Why does the discrepancy exist?

Answer The authors did two things to ensure that the results would look
favorable. First, the positive cases were chosen from a highly select group of
men in a CCU with confirmed cardiac disease, so they were more extreme
than the usual suspected arteriosclerosis. Second, the initial study had too
high a prevalence of disease. By including the “normal” volunteers and,
better still, assuming that they had normal angiograms, they succeeded in
messing the base rates in their favor. : :

. Beware the “sample samba.” By dancing around with prevalence, or by
selecting extreme groups (e.g., phys. ed. students and 70-year-olds on their
third myocardial infarction), anyone can make any test in the world look
good.

C.R.A.P. DETECTOR llI-2

Question A recent reanalysis was conducted of the Blair et al. National
Cancer Institute study of the occupational effects of formaldehyde on
cancer. They were unable to show any significant relationship between
formaldehyde level and lung cancer, but did demonstrate a relationship
between job class and cancer. They concluded that the retrospective
measurement of formaldehyde was too crude, and that blue collar workers
suffered more lung cancer as a result of occupational exposure to
formaldehyde. The study was not published (thank goodness!). Why?

Answer The measurement of formaldehyde level may have been crude,
butthe use of job class as a surrogate for exposure ignores the many other
variables that go along with job class. First, blue collar workers smoke more,
‘and smoking causes lung cancer. Second, lower social class folks suffer
more disease of all types, and live less long than upper class folks. -
Correlation is not equal to causation. (See Assessing Causation).
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C.R.A.P. DETECTOR IlI-3

Question In a study of the causes of cervical cancer one potential cause
under investigation was whether or not the man was circumcised. The
researchers approached 166 males and asked whether they were circum-
cised. This was then confirmed by a physical examination. Of the 44 men
who said they were, 21 (48 percent) were not, and of the 122 men who said
they were not circumcised, 50 (40 percent) were! Don’t men know whether
or not they are circumcised?

Answer Self-report may be a lousy lab test. If an investigator is using
self-report data, there should be some assurance (other than faith!) that the

" data are valid.

C.R.A.P. DETECTOR Ili-4

Question For about two decades, patient management problems
(PMPs) have been used as a component in the certification examination
used to license physicians in Canada and.the U.S. These are written
simulations of a patient, on which the candidate selects options on history,
physical, laboratory, and management and is rewarded (or pumshec_l) on
the basis of the good options he selected and harmful options he av_ondgd.
Many studies demonstrated that candidates felt the method to be llfg-llke
(face validity), and care was taken to ensure that they were medically
accurate (content validity). They have also been used as a- measure of
problem-solving skills. This was confirmed by a low correlation’ of P{V\P
results with tests of knowledge, which suggested that they were measuring
“something else” (construct validity). Can PMPs be considered to be good
predictors of physician performance?

Answer Recent studies showed a very low reliability of the scores, whjch
suggests that the “something else” they were measuring was simply noise.
Other studies showed that candidates do about twice as much of everyttupg
(such as ordering lab tests) on the written problem as they do in real life.
Both licensing bodies have subsequently dropped the requirement for
performance on PMPs. ' o

Face and content validity are poor substitutes for empiric forms of
validity. Anyone can recruit some friends who will like his/her measure. The
best test of validity is criterion-related validity. All others are relatively weak
approximations. -
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